Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Neuro-Oncology ; 24(Supplement 7):vii66-vii67, 2022.
Article in English | EMBASE | ID: covidwho-2189423

ABSTRACT

BACKGROUND: Although mRNA vaccines have been deployed with great success against COVID-19, unlocking this technology against glioblastoma will necessitate new lipid-nanoparticle formulations that overcome cancer tolerance and immunosuppression. OBJECTIVE/METHODS: We sought to develop a novel mRNA vaccine system to make tolerogenic tumor antigens appear more dangerous through use of unmodified nucleosides (pathogen associated molecular patterns, PAMPs) and highly cationic lipid shells that elicit a systemic damage response against cancer antigens. RESULT(S): We developed a novel vaccine formulation that increases payload packaging of tumor amplified mRNA into multilamellar (onion-shaped) particles for systemic (intravenous) administration. We demonstrate significant immunogenicity and efficacy of multilamellar RNA-NPs in syngeneic murine models for high-grade glioma (KR158b-pp65), and diffuse midline glioma (H3K27M DMG). Remarkably, RNA-NPs significantly improve median survival outcomes of DMG bearing mice beginning therapy at endpoint (Day 35 after midline intracranial implantation). Unlike prototypical mRNA vaccines that activate endosomal toll-like receptors (i.e. TLR7), multilamellar RNA-NPs elicit immunologic response predominantly through intracellular pathogen recognition receptors (RIG-I);long-term survival benefits from RNA-NPs were completely abrogated in RIG-I knockout mice. In canines (pet dogs) with spontaneous gliomas, RNA-NPs elicit massive recruitment/activation of peripheral blood mononuclear cells (PBMCs) which correlate with their trafficking into lymphoreticular organs (in follow-up murine studies). In canines receiving neoadjuvant RNA-NPs, prior to glioma biopsy, we see significant reprogramming of the glioma microenvironment with increased gene signatures for antigen processing/ presentation, interferon signaling and cytotoxicity. Upon translation into human clinical trials for glioblastoma patients (NCT04573140), RNA-NPs elicit rapid (within hours) release of cytokines (e.g. IL-1, IL-6, IL-12 TNF- alpha, interferons) and chemokines (e.g. MIP1alpha, MCP-1, IP-10), which correlate with mobilization of PBMCs and activation of dendritic cells/CD8 lymphocytes. CONCLUSION(S): First-in-human application of systemic multilamellar RNA-NP vaccines results in significant biologic effects and rapid immunologic reprogramming.

2.
Neuro-Oncology ; 23(SUPPL 1):i29, 2021.
Article in English | EMBASE | ID: covidwho-1379469

ABSTRACT

Background: Since the preponderance of pediatric gliomas are mutationally 'bland,' immune checkpoint inhibitors are unlikely to mediate therapeutic benefit. Alternately, immunologic response can be induced de novo against pediatric gliomas with mRNA cancer vaccines. Messenger RNA represents a paradigm shift in vaccinology (i.e. COVID-19) given its flexibility, commercialization, and propensity to confer rapid protection with only a single vaccine. Objective: We sought to develop a new mRNA platform with an optimized backbone for insertion of both personalized and/or “off the shelf” (i.e. H3K27M) transcripts for rapid induction of anti-tumor activity against pediatric gliomas. Approach: We synthesized an mRNA backbone with optimized 5' and 3' UTRs for delivery of gene transcripts pertinent to pediatric brain tumors using a lipid-nanoparticle (NP) delivery vehicle. This vaccine utilizes a novel engineering design that layers tumor derived mRNA into a lipid-nanoparticle (NP) “onion-like” or multi-lamellar package. Results: We demonstrate immunogenicity of RNA-NPs delivering either personalized glioma mRNA or H3K27M mRNA. RNA-NPs localize to myeloid cells in murine KR158b brain tumors and activate dendritic cells that supplant regulatory intratumoral myeloid populations inducing antigenrecall response with long-term survivor benefit. Our optimized mRNA backbone yielded significantly improved anti-tumor efficacy compared with commercial backbones. We have shown this approach can be refined for co-delivery of immunomodulatory RNAs (i.e. GM-CSF) and/or delivery of siRNAs targeting immunoregulatory axes (PD-L1) in murine brain tumors (GL261). We have since established safety of RNA-NPs in acute/chronic murine GLP toxicity studies without cross-reactivity to normal-brain, and launched a large-animal canine brain tumor trial which demonstrated RNANPs to be feasible, safe and immunologically active. Conclusion: RNA-NPs reprogram the brain tumor microenvironment while inducing a gliomaspecific immune response. We have since received FDA-IND approval for first-in-human trials.

SELECTION OF CITATIONS
SEARCH DETAIL